Pluto Bioinformatics

GSE133291: Landscape of ribosome-engaged alternative transcript isoforms across neuronal cell classes

Bulk RNA sequencing

The goal of this project was to assess how alternative splicing programs are arrayed across neuronal cells types. We systematically mapped ribosome-associated transcript isoforms in genetically-defined neuron types of the mouse forebrain. The endogenous ribosomal protein Rpl22 was conditionally HA-tagged in glutamatergic neurons (using CamK2-cre for most neocortical pyramidal cells and Scnn1a-cre for spiny stellate and star pyramid layer 4 cells), and GABAergic interneurons [with somatostatin-cre (SST), parvalbumin-cre (PV) and vasointestinal peptide-cre (VIP)]. Within the hippocampus, we further targeted Cornu ammonis 1 (CA1) neurons (CamK2-cre), CA3 neurons (Grik4-cre), and SST-positive interneurons (SST-cre). Four replicates were deep sequenced (~100 million reads) using an Illumina platform. We find that neuronal transcript isoform profiles reliably distinguish even closely-related classes of pyramidal cells and inhibitory interneurons in the mouse hippocampus and neocortex, positing transcript diversification by alternative splicing as a central mechanism for the functional specification of neuronal cell types and circuits. SOURCE: Geoffrey Fucile University of Basel

View this experiment on Pluto Bioinformatics