Pluto Bioinformatics

GSE144296: A highly scalable method for joint whole genome sequencing and gene expression profiling of single cells

Bulk RNA sequencing

To address how genetic variation alters gene expression in complex cell mixtures, we developed Direct Nuclear Tagmentation and RNA-sequencing (DNTR-seq), which enables whole genome and mRNA sequencing jointly in single cells. DNTR-seq readily identified minor subclones within leukemia patients. In a large-scale DNA damage screen, DNTR-seq was used to detect regions under purifying selection, and identified genes where mRNA abundance was resistant to copy number alteration, suggesting strong genetic compensation. mRNA-seq quality equals RNA-only methods, and the low positional bias of genomic libraries allowed detection of sub-megabase aberrations at ultra-low coverage. Each cell library is individually addressable and can be re-sequenced at increased depth, allowing multi-tiered study designs. Additionally, the direct tagmentation protocol enables coverage-independent estimation of ploidy, which can be used to identify cell singlets. Thus, DNTR-seq directly links each cell?s state to its corresponding genome at scale, enabling routine analysis of heterogeneous tumors and other complex tissues. SOURCE: Vasilios Zachariadis (vasilios.zachariadis@ki.se) - BioClinicum J6:30 Karolinska Institutet

View this experiment on Pluto Bioinformatics