Pluto Bioinformatics

GSE104381: Loss of Trem2 in microglia leads to widespread disruption of cell coexpression networks in mouse brain

Bulk RNA sequencing

Rare heterozygous coding variants in the triggering receptor expressed in myeloid cells 2 (TREM2) gene, conferring increased risk of developing late-onset Alzheimer's disease, have been identified. We examined the transcriptional consequences of the loss of Trem2 in mouse brain to better understand its role in disease using differential expression and coexpression network analysis of Trem2 knockout and wild-type mice. We generated RNA-Seq data from cortex and hippocampus sampled at 4 and 8 months. Using brain cell-type markers and ontology enrichment, we found subnetworks with cell type and/or functional identity. We primarily discovered changes in an endothelial gene-enriched subnetwork at 4 months, including a shift toward a more central role for the amyloid precursor protein gene, coupled with widespread disruption of other cell-type subnetworks, including a subnetwork with neuronal identity. We reveal an unexpected potential role of Trem2 in the homeostasis of endothelial cells that goes beyond its known functions as a microglial receptor and signaling hub, suggesting an underlying link between immune response and vascular disease in dementia.; ; Methods: We performed differential expression and co-expression network analysis on a RNA-Seq profiled Trem2 knockout (KO) mouse using two brain areas sampled at 4- and 8-months to obtain a systems level view of the effects of the absence of Trem2.; Results: The absence of Trem2 has a stronger effect at an earlier age with the number of differential expressed (DE) genes being 17-fold greater at 4 months than at 8 months in cortex. By integrating DE genes and network analysis, we discovered gene clusters associated with the disruption of blood vessel formation at 4 months of age and protein targeting primarily affecting the hippocampus at 8 months. Further integration of cell type and ontology information revealed a large disruption of a gene module enriched for endothelial cell markers coinciding with the module enriched for neuron cell markers having weaker connections to modules with oligodendrocyte and astrocyte identities. The module with neuronal identity has decreased expression only in the KO where it has closer association with a new module enriched for phagocytic functions.; Conclusions: Combining gene co-expression and differential expression analysis on a newly generated RNA-Seq profiled Trem2 KO mouse demonstrate that the absence of Trem2 produces a disruption which mainly affects endothelialon related processes at 4 months of age. It results in a ripple effect that disrupts the cross-talk of other cell types at 8 months, including reduced expression of a gene module enriched in neuron related functions and a shift towards a more central role for App. This study reveals an unexpected role of Trem2 in the homeostasis of endothelial cells that goes beyond its known functions as a microglial receptor and signaling hub suggesting new paths for investigation at the intersection between Trem2, Alzheimers disease and vascular dementia. SOURCE: Guillermo Carbajosa (guillermo.carbajosa_antona@kcl.ac.uk) - SGDP Centre, IoPPN, Box PO 80 King's College London

View this experiment on Pluto Bioinformatics