Pluto Bioinformatics

GSE119668: Molecular mechanism impacted by circadian disruption underscores the importance of timed anti-cancer treatment

Bulk RNA sequencing

Circadian disruption has multiple pathological consequences, but the underlying mechanisms are largely unclear. To address such mechanisms, we subjected cultured cells to chronic circadian desynchrony (CCD), mimicking a chronic jet-lag paradigm, and assayed a range of cellular functions. The results indicated a specific circadian clock-dependent increase in cell proliferation. Transcriptome analysis revealed upregulation of G1-S-phase transition genes (cMyc, CyclinD1/3, Cdt1), concomitant with increased phosphorylation of the Retinoblastoma protein (Rb) by Cyclin D kinase 4/6 (CDK4/6) and increased G1-S progression. Phospho-Rb (Ser807/811) was found to oscillate in a circadian fashion and exhibit phase-shifted rhythms in circadian desynchronized cells. A CDK4/6 inhibitor approved for cancer treatment reduced growth of cultured cells and mouse tumors in a time-of-day specific manner, but the time dependence was lost with CCD. Our study identifies a mechanism that underlies effects of circadian disruption on tumor growth and underscores the importance of treatment timed to endogenous circadian rhythms. SOURCE: Yool Lee Perelman School of Medicine at the University of Pennsylvania

View this experiment on Pluto Bioinformatics