Pluto Bioinformatics

GSE150949: Cycling cancer persisters arise from lineages with distinct transcriptional and metabolic programs

Bulk RNA sequencing

Non-genetic mechanisms have recently emerged as important drivers of therapy failure in cancer, where some cancer cells can enter a reversible drug-tolerant persister state in response to treatment. While most cancer persisters, like their bacterial counterparts, remain arrested in the presence of drug, a rare subset of cancer persisters can re-enter the cell cycle under constitutive drug treatment. Little is known about the non-genetic mechanisms that enable cancer persisters to simultaneously resist therapy and maintain proliferative capacity in the presence of drug. To address this, we developed Watermelon, a new high-complexity expressed barcode lentiviral library for simultaneous tracing each cells clonal origin, proliferative state, and transcriptional state, and used it to study this rare, transiently-resistant, proliferative persister population and identify what distinguishes it from non-cycling persisters. Analysis of Watermelon-transduced PC9 cells demonstrated that cycling and non-cycling persisters arise from different pre-existing cell lineages with distinct transcriptional and metabolic programs. The proliferative capacity of persisters is associated with an upregulation of antioxidant gene programs and a metabolic shift to fatty acid oxidation in specific subpopulations of tumor cells. SOURCE: Yaara Oren (yoren@broadinstitute.org) - Yaara Oren Broad institute

View this experiment on Pluto Bioinformatics