Pluto Bioinformatics

GSE110513: Integrating single-cell transcriptomic data across different conditions, technologies, and species

Bulk RNA sequencing

Computational single-cell RNA-seq (scRNA-seq) methods have been successfully applied to experiments representing a single condition, technology, or species to discover and define cellular phenotypes. However, identifying subpopulations of cells that are present across multiple datasets remains challenging. Here, we introduce an analytical strategy for integrating scRNA-seq datasets based on common sources of variation, enabling the identification of shared populations across datasets and downstream comparative analysis. Implemented in our R toolkit Seurat (, we use our approach to align scRNA-seq datasets of peripheral blood monocytes (PBMCs) under resting and stimulated conditions, hematopoietic progenitors sequenced using two profiling technologies, and pancreatic cell atlases generated from human and mouse islets. In each case, we learn distinct or transitional cell states jointly across datasets, while boosting statistical power through integrated analysis. Our approach facilitates general comparisons of scRNA-seq datasets, potentially deepening our understanding of how distinct cell states respond to perturbation, disease, and evolution. SOURCE: Andrew Butler ( - Satija Lab New York Genome Center

View this experiment on Pluto Bioinformatics