Pluto Bioinformatics

GSE133531: Single-cell atlas of the developing brain to investigate the cellular origins of pediatric brain tumors

Bulk RNA sequencing

Gene expression is finely regulated during development, and deregulation can lead to disease. In pediatric brain tumors (PBT), disruption of neurodevelopmental gene regulation programs are suspected to drive oncogenesis. However, the transcriptional landscape and genetic regulation processes of the healthy developing brain are not fully characterized, limiting our investigation of these tumors. We used single-cell RNA-sequencing to generate a transcriptomic atlas of >65,000 cells in the developing forebrain and pons in human and mouse, two regions where PBT commonly arise. We projected bulk RNA-seq profiles for a cohort of 198 PBT onto these cell types, followed by focused analysis of three PBT subtypes by single-cell profiling: WNT medulloblastoma, embryonal tumors with multilayered rosettes (ETMR), and atypical teratoid/rhabdoid tumors (ATRT). Altogether, we pinpoint stalled differentiation during developmental programs as a common etiological mechanism of PBT, providing a valuable resource to aid modeling and therapeutics. SOURCE: Claudia,L,Kleinman (claudia.kleinman@mcgill.ca) - Lady Davis Institute for Medical Research

View this experiment on Pluto Bioinformatics