Pluto Bioinformatics

GSE57403: Epigenomic comparison of distinct pluripotent stem cell states reveals a new class of enhancers with roles throughout mammalian development (RNA-seq)

Bulk RNA sequencing

Nave mouse embryonic stem cells (mESCs) and primed epiblast stem cells (mEpiSCs) represent successive snapshots of pluripotency during embryogenesis. Using transcriptomic and epigenomic mapping, we show that a small fraction of transcripts are differentially expressed between mESCs and mEpiSCs and these genes show expected changes in chromatin at their promoters and enhancers. Unexpectedly, the cis-regulatory circuitry of genes that are expressed at identical levels between these cell states also differs dramatically. In mESCs, these genes are associated with dominant proximal enhancers and dormant distal enhancers, which we term seed enhancers. In mEpiSCs, the nave-dominant enhancers are lost, and the seed enhancers take up primary transcriptional control. Seed enhancers have increased sequence conservation and show preferential usage in downstream somatic tissues, often expanding into super enhancers. We propose that seed enhancers ensure proper enhancer utilization and transcriptional fidelity as mammalian cells transition from nave pluripotency to a somatic regulatory program. SOURCE: Paul,J.,Tesar (paul.tesar@case.edu) - Case Western Reserve University School of Medicine

View this experiment on Pluto Bioinformatics