Loading...

Pluto Bioinformatics

GSE52616: Effect of LMP7 and MECL1-immunoproteasome subunits deficiency on the transcriptome of mouse bone marrow-derived dendritic cells

Bulk RNA sequencing

As regulators of protein degradation, proteasomes regulate practically all cellular functions. It is therefore logical to assume that replacement of the constitutive proteasome (CP) by its IFN- inducible homolog immunoproteasome (IP) could have far reaching effects on cell function. Accordingly, recent studies have revealed important roles for IPs in immune cells beyond MHC I-peptide processing. Moreover, the expression of IPs in non-immune cells from non-inflamed tissues suggests that the involvement of IPs is not limited to the immune system. We demonstrate here that IP-deficiency affects the transcription of 8104 genes in maturing dendritic cells (DCs). This occurs mainly through non-redundant regulation of key immune-related transcription factors by CPs and IPs. Additionally, IP-deficiency decreases DC's efficiency to activate CD8+ T cells in vivo. Our study reveals that the broad cellular roles of IPs could rely on transcription regulation and, more importantly, illustrates how IP-deficiency could generate MHC I-peptide processing-independent phenotypes. SOURCE: Claude Perreault Institute for Research in Immunology and Cancer

View this experiment on Pluto Bioinformatics