Pluto Bioinformatics

GSE115437: HDAC1 modulates OGG1-initiated oxidative DNA damage repair, brain aging, and Alzheimers disease pathology

Bulk RNA sequencing

Unrepaired DNA damage contributes to brain aging and neurodegenerative diseases. However, the factors stimulating DNA repair activity to stave off age-associated functional decline remain obscure. Here, we show that histone deacetylase 1 (HDAC1) modulates DNA repair in the aging brain via targeting OGG1 of the base excision repair pathway. Mice deficient in HDAC1 display age-associated accumulation of DNA damage in the brain and cognitive impairment. HDAC1 interacts with and positively stimulates OGG1, a DNA glycosylase that primarily acts on 8-oxoguanine (8-oxoG), a type of oxidative DNA damage associated with transcriptional repression. Loss of HDAC1 leads to impaired OGG1 activity, 8-oxoG accumulation at the promoters of a subset of genes critical for brain function, and transcriptional repression. Moreover, we observe elevated 8-oxoG lesions along with reduced HDAC1 activity and downregulation of a similar set genes in the 5XFAD mouse model of Alzheimers disease (AD). Notably, pharmacological activation of HDAC1 confers protection against the deleterious effects of 8-oxoG lesions in the brains of aged wild-type and 5XFAD mice. Our work uncovers an important role for HDAC1 in the repair of 8-oxoG lesions and highlights HDAC1 activation as a novel therapeutic strategy to counter functional decline during brain aging and neurodegeneration. SOURCE: Li-Huei Tsai (lhtsai_geo@hotmail.com) - Li-Huei Tsai MIT

View this experiment on Pluto Bioinformatics